670 research outputs found

    Synthesized grain size distribution in the interstellar medium

    Get PDF
    We examine a synthetic way of constructing the grain size distribution in the interstellar medium (ISM). First we formulate a synthetic grain size distribution composed of three grain size distributions processed with the following mechanisms that govern the grain size distribution in the Milky Way: (i) grain growth by accretion and coagulation in dense clouds, (ii) supernova shock destruction by sputtering in diffuse ISM, and (iii) shattering driven by turbulence in diffuse ISM. Then, we examine if the observational grain size distribution in the Milky Way (called MRN) is successfully synthesized or not. We find that the three components actually synthesize the MRN grain size distribution in the sense that the deficiency of small grains by (i) and (ii) is compensated by the production of small grains by (iii). The fraction of each {contribution} to the total grain processing of (i), (ii), and (iii) (i.e., the relative importance of the three {contributions} to all grain processing mechanisms) is 30-50%, 20-40%, and 10-40%, respectively. We also show that the Milky Way extinction curve is reproduced with the synthetic grain size distributions.Comment: 10 pages, 6 figures, accepted for publication in Earth, Planets, and Spac

    Estimation and inference under economic restrictions

    Get PDF
    Estimation of economic relationships often requires imposition of constraints such as positivity or monotonicity on each observation. Methods to impose such constraints, however, vary depending upon the estimation technique employed. We describe a general methodology to impose (observation-specific) constraints for the class of linear regression estimators using a method known as constraint weighted bootstrapping. While this method has received attention in the nonparametric regression literature, we show how it can be applied for both parametric and nonparametric estimators. A benefit of this method is that imposing numerous constraints simultaneously can be performed seamlessly. We apply this method to Norwegian dairy farm data to estimate both unconstrained and constrained parametric and nonparametric models

    A novel class of microRNA-recognition elements that function only within open reading frames.

    Get PDF
    MicroRNAs (miRNAs) are well known to target 3' untranslated regions (3' UTRs) in mRNAs, thereby silencing gene expression at the post-transcriptional level. Multiple reports have also indicated the ability of miRNAs to target protein-coding sequences (CDS); however, miRNAs have been generally believed to function through similar mechanisms regardless of the locations of their sites of action. Here, we report a class of miRNA-recognition elements (MREs) that function exclusively in CDS regions. Through functional and mechanistic characterization of these 'unusual' MREs, we demonstrate that CDS-targeted miRNAs require extensive base-pairing at the 3' side rather than the 5' seed; cause gene silencing in an Argonaute-dependent but GW182-independent manner; and repress translation by inducing transient ribosome stalling instead of mRNA destabilization. These findings reveal distinct mechanisms and functional consequences of miRNAs that target CDS versus the 3' UTR and suggest that CDS-targeted miRNAs may use a translational quality-control-related mechanism to regulate translation in mammalian cells

    Acquisition of Ca2+ and HCO3−/CO32− for shell formation in embryos of the common pond snail Lymnaea stagnalis

    Get PDF
    Embryos of the freshwater common pond snail Lymnaea stagnalis develop to hatch within 10 days under control conditions (22°C, Miami-Dade tap water) and this development is impaired by removal of ambient calcium. In contrast, embryos did not exhibit dependence upon an ambient HCO3−/CO32− source, developing and hatching in HCO3−/CO32−-free water at rates comparable to controls. Post-metamorphic, shell-laying embryos exhibited a significant saturation-type calcium uptake as a function of increasing ambient calcium concentration. However, changes in ambient bicarbonate concentration did not influence calcium or apparent titratable alkalinity uptake. There was a distinct shift from no significant flux in pre-metamorphic embryos to net uptake of calcium in post-metamorphic stages as indicated by an increased uptake from the micro-environment surrounding the egg mass and increased net uptake in 24-h, whole egg mass flux measurements. Furthermore, HCO3−/CO32− acquisition as measured by titratable alkalinity flux is at least partially attributable to an endogenous carbonate source that is associated with acid extrusion. Thus, calcium requirements for embryonic shell formation are met via uptake but HCO3−/CO32−, which is also necessary for shell formation is acquired in part from endogenous sources with no detectable correlation to ambient HCO3−/CO32− availability

    Application of 4,5-diaminofluorescein to reliably measure nitric oxide released from endothelial cells in vitro

    Get PDF
    Here we describe in more depth the previously published application of the fluorescent probe 4,5-diaminofluorescein (DAF-2) in order to reliably measure low levels of nitric oxide (NO) as released from human endothelial cells in vitro. The used approach is based on the following considerations a) use low concentrations of DAF-2 (0.1 µM) in order to reduce the contribution of DAF-2 auto-fluorescence to the measured total fluorescence, and b) subtract the DAF-2 auto-fluorescence from the measured total fluorescence. The advantage of this method is the reliable quantification of NO in a biological system in the nanomolar range once thoroughly validated. Here we focus in addition to the previous publication (Leikert et al., FEBS Lett 2001, 506:131-134) on aspects of validation procedures as well as limitations and pitfalls of this method

    Acceptability of a Positive Parenting Programme on a Mother and Baby Unit: Q-Methodology with Staff

    Get PDF
    The Baby Triple P Positive Parenting Programme, a new addition to the established Triple P programmes, is currently being considered for a trial in a Mother and Baby Unit with the aim of exploring its benefits to mothers presenting with severe mental illness. The aim of the current study was to investigate staff views of the acceptability and feasibility of a parenting programme such as the Baby Triple P Positive Parenting Programme in a Mother and Baby Unit. Q-methodology, using an 88-item Q-sort, was employed to explore the opinions of 16 staff working in a Mother and Baby Unit in the North West of England. Results obtained from the Q-sort analysis identified two distinct factors: (1) staff qualified acceptance and (2) systemic approach/systemic results. Preliminary findings indicate that staff perceived Baby Triple P to be an acceptable and feasible intervention for the Mother and Baby Unit setting and that mothers on the unit would be open and receptive to the programme. Further research is required to expand these findings and assess the potential for this type of intervention to be used more widely across a number of Mother and Baby Unit settings

    Malaria parasites regulate the duration of the intra-erythrocytic cycle via serpentine receptor 10 and coordinate development with host daily rhythms

    Get PDF
    Malaria parasites complete their intra-erythrocytic developmental cycle (IDC) in multiples of 24 h suggesting a circadian basis, but the mechanism controlling this periodicity is unknown. Combining in vivo and in vitro approaches utilizing rodent and human malaria parasites, we reveal that: (i) 57% of Plasmodium chabaudi genes exhibit daily rhythms in transcription; (ii) 58% of these genes lose transcriptional rhythmicity when the IDC is out-of-synchrony with host rhythms; (iii) 6% of Plasmodium falciparum genes show 24 h rhythms in expression under free-running conditions; (iv) Serpentine receptor 10 (SR10) has a 24 h transcriptional rhythm and disrupting it in rodent malaria parasites shortens the IDC by 2-3 h; (v) Multiple processes including DNA replication, and the ubiquitin and proteasome pathways, are affected by loss of coordination with host rhythms and by disruption of SR10. Our results reveal malaria parasites are at least partly responsible for scheduling the IDC and coordinating their development with host daily rhythms
    corecore